Newer
Older

Christian Godenschwager
committed
# waLBerla
waLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively
parallel framework for multi physics applications. Besides its original
objective, Lattice Boltzmann solvers for hydrodynamics, it now contains
modules for other applications like Multigrid and rigid body dynamics
as well. Great emphasis is placed on the interoperability between the modules
in particular the fluid-particle coupling.
It scales from laptops to current and future supercomputers while maintaining
near-perfect efficiency.

Christian Godenschwager
committed
See https://www.walberla.net/ for more information and a showcase of applications.

Christian Godenschwager
committed
## Documentation and Tutorials
Documentation for the C++ framework is available in
[Doxygen](http://walberla.net/doxygen/index.html), while the Python interface
is documented in [Sphinx](http://walberla.net/sphinx/index.html).

Christian Godenschwager
committed
## Getting started
The minimum requirements are a C++17-compliant compiler (e.g. GCC or Clang)
and the [CMake](http://www.cmake.org)

Christian Godenschwager
committed
build system. Furthermore, you need an MPI library (like
[Open MPI](http://www.open-mpi.org)) if you want to make use of parallel
processing capabilities. All of these dependencies are typically available in
your operating system's package manager.
### CMake
The typical steps, assuming your are in the waLBerla source directory, are:
- `mkdir build; cd build` create a build directory and change into it
- `cmake ..` call CMake with the waLBerla source directory as an argument
- `make` build waLBerla
To specify a CMake option you need to use `-D(Option)=(Value)`. For example to set the C++ compiler one can use:
`cmake -DCMAKE_CXX_COMILER=clang++`
To list and modify the CMake options the `ccmake` tool can be used. Just call `ccmake .` in your **build** directory to see and change the
CMake options and variables.
Some important CMake variables:
- `WALBERLA_BUILD_WITH_CODEGEN` Enable pystencils code generation"
- `Python_ROOT_DIR` Specify the directory of the `python` executable. e.g. `~/miniconda/bin/`
- `MPI_HOME` Specify the base directory of the MPI installation.
- `WALBERLA_BUILD_WITH_PYTHON` Support for embedding Python
- `WALBERLA_BUILD_WITH_CUDA` Enable CUDA support
For a full list of CMake Option see the [CMakeLists.txt](CMakeLists.txt) file or use `ccmake` as described above.
To use the `lbmpy`/`pystencils` code generation please install the packages with e.g. `pip3 install lbmpy` and specify the correct python
environment when calling CMake.
In previous versions of CMake one could use `PYTHON_EXECUTABLE` or `PYTHON_ROOT_DIR` (all upper case) to specify the python executable or
the directory. This does **NOT** work anymore. Please use `Python_ROOT_DIR`.

Christian Godenschwager
committed
## Get involved
### Contributing
Please submit all code contributions on our
[GitLab](https://i10git.cs.fau.de/walberla/walberla). To get an account, please
sign and submit the [contributor license agreement](CONTRIBUTING.txt).

Christian Godenschwager
committed
### Support
While we currently do not have a mailing list, any questions can be asked via
the [Issue Tracker](https://i10git.cs.fau.de/walberla/walberla/issues).
## Authors
Many thanks go to waLBerla's [contributors](AUTHORS.txt)
### Please cite us
If you use waLBerla in a publication, please cite the following articles:

Christian Godenschwager
committed
- M. Bauer et al., *waLBerla: A block-structured high-performance framework for
multiphysics simulations*. Computers & Mathematics with Applications, 2020.
https://doi.org/10.1016/j.camwa.2020.01.007.
- F. Schornbaum and U. Rüde, *Massively parallel algorithms for the lattice boltzmann
method on nonuniform grids*. SIAM Journal on Scientific Computing, 2016.
https://doi.org/10.1137/15M1035240
- C. Rettinger and U. Rüde, *A comparative study of fluid-particle coupling methods for
fully resolved lattice Boltzmann simulations*. Computers & Fluids, 2017.
https://doi.org/10.1016/j.compfluid.2017.05.033
Free-surface LBM:
- C. Schwarzmeier et al., *Comparison of free-surface and conservative Allen-Cahn phase-field
lattice Boltzmann method*. Journal of Computational Physics, 2023.
https://doi.org/10.1016/j.jcp.2022.111753
Allen-Cahn phase-field LBM
- M. Holzer et al., *Highly efficient lattice Boltzmann multiphase simulations of immiscible
fluids at high-density ratios on CPUs and GPUs through code generation*. The International Journal of High Performance Computing Applications, 2021.
https://doi.org/10.1177/10943420211016525
- S. Eibl and U. Rüde, *A Modular and Extensible Software Architecture for Particle Dynamics*.
Proceedings Of The 8Th International Conference On Discrete Element Methods.
https://mercurylab.co.uk/dem8/full-papers/#page-content
- G. Drozdov et al., *Densification of single-walled carbon nanotube films:
Mesoscopic distinct element method simulations and experimental validation*.
Journal of Applied Physics, 2020. https://doi.org/10.1063/5.0025505

Christian Godenschwager
committed
## License