Newer
Older
import pycuda.gpuarray as gpuarray
from scipy.ndimage import convolve
from pystencils import Assignment, Field, fields
from pystencils.gpucuda import BlockIndexing, create_cuda_kernel, make_python_function
from pystencils.gpucuda.indexing import LineIndexing
from pystencils.simp import sympy_cse_on_assignment_list
from pystencils.slicing import add_ghost_layers, make_slice, remove_ghost_layers
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def test_averaging_kernel():
size = (40, 55)
src_arr = np.random.rand(*size)
src_arr = add_ghost_layers(src_arr)
dst_arr = np.zeros_like(src_arr)
src_field = Field.create_from_numpy_array('src', src_arr)
dst_field = Field.create_from_numpy_array('dst', dst_arr)
update_rule = Assignment(dst_field[0, 0],
(src_field[0, 1] + src_field[0, -1] + src_field[1, 0] + src_field[-1, 0]) / 4)
ast = create_cuda_kernel(sympy_cse_on_assignment_list([update_rule]))
kernel = make_python_function(ast)
gpu_src_arr = gpuarray.to_gpu(src_arr)
gpu_dst_arr = gpuarray.to_gpu(dst_arr)
kernel(src=gpu_src_arr, dst=gpu_dst_arr)
gpu_dst_arr.get(dst_arr)
stencil = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) / 4.0
reference = convolve(remove_ghost_layers(src_arr), stencil, mode='constant', cval=0.0)
reference = add_ghost_layers(reference)
np.testing.assert_almost_equal(reference, dst_arr)
def test_variable_sized_fields():
src_field = Field.create_generic('src', spatial_dimensions=2)
dst_field = Field.create_generic('dst', spatial_dimensions=2)
update_rule = Assignment(dst_field[0, 0],
(src_field[0, 1] + src_field[0, -1] + src_field[1, 0] + src_field[-1, 0]) / 4)
ast = create_cuda_kernel(sympy_cse_on_assignment_list([update_rule]))
kernel = make_python_function(ast)
size = (3, 3)
src_arr = np.random.rand(*size)
src_arr = add_ghost_layers(src_arr)
dst_arr = np.zeros_like(src_arr)
gpu_src_arr = gpuarray.to_gpu(src_arr)
gpu_dst_arr = gpuarray.to_gpu(dst_arr)
kernel(src=gpu_src_arr, dst=gpu_dst_arr)
gpu_dst_arr.get(dst_arr)
stencil = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) / 4.0
reference = convolve(remove_ghost_layers(src_arr), stencil, mode='constant', cval=0.0)
reference = add_ghost_layers(reference)
np.testing.assert_almost_equal(reference, dst_arr)
def test_multiple_index_dimensions():
"""Sums along the last axis of a numpy array"""
src_size = (7, 6, 4)
dst_size = src_size[:2]
src_arr = np.asfortranarray(np.random.rand(*src_size))
dst_arr = np.zeros(dst_size)
src_field = Field.create_from_numpy_array('src', src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array('dst', dst_arr, index_dimensions=0)
offset = (-2, -1)
update_rule = Assignment(dst_field[0, 0],
sum([src_field[offset[0], offset[1]](i) for i in range(src_size[-1])]))
ast = create_cuda_kernel([update_rule])
kernel = make_python_function(ast)
gpu_src_arr = gpuarray.to_gpu(src_arr)
gpu_dst_arr = gpuarray.to_gpu(dst_arr)
kernel(src=gpu_src_arr, dst=gpu_dst_arr)
gpu_dst_arr.get(dst_arr)
reference = np.zeros_like(dst_arr)
gl = np.max(np.abs(np.array(offset, dtype=int)))
for x in range(gl, src_size[0]-gl):
for y in range(gl, src_size[1]-gl):
reference[x, y] = sum([src_arr[x+offset[0], y+offset[1], i] for i in range(src_size[2])])
np.testing.assert_almost_equal(reference, dst_arr)
def test_ghost_layer():
size = (6, 5)
src_arr = np.ones(size)
dst_arr = np.zeros_like(src_arr)
src_field = Field.create_from_numpy_array('src', src_arr, index_dimensions=0)
dst_field = Field.create_from_numpy_array('dst', dst_arr, index_dimensions=0)
update_rule = Assignment(dst_field[0, 0], src_field[0, 0])
ghost_layers = [(1, 2), (2, 1)]
ast = create_cuda_kernel([update_rule], ghost_layers=ghost_layers, indexing_creator=LineIndexing)
kernel = make_python_function(ast)
gpu_src_arr = gpuarray.to_gpu(src_arr)
gpu_dst_arr = gpuarray.to_gpu(dst_arr)
kernel(src=gpu_src_arr, dst=gpu_dst_arr)
gpu_dst_arr.get(dst_arr)
reference = np.zeros_like(src_arr)
reference[ghost_layers[0][0]:-ghost_layers[0][1], ghost_layers[1][0]:-ghost_layers[1][1]] = 1
np.testing.assert_equal(reference, dst_arr)
def test_setting_value():
arr_cpu = np.arange(25, dtype=np.float64).reshape(5, 5)
arr_gpu = gpuarray.to_gpu(arr_cpu)
iteration_slice = make_slice[:, :]
f = Field.create_generic("f", 2)
update_rule = [Assignment(f(0), sp.Symbol("value"))]
ast = create_cuda_kernel(update_rule, iteration_slice=iteration_slice, indexing_creator=LineIndexing)
kernel = make_python_function(ast)
kernel(f=arr_gpu, value=np.float64(42.0))
np.testing.assert_equal(arr_gpu.get(), np.ones((5, 5)) * 42.0)
def test_periodicity():
from pystencils.gpucuda.periodicity import get_periodic_boundary_functor as periodic_gpu
from pystencils.slicing import get_periodic_boundary_functor as periodic_cpu
arr_cpu = np.arange(50, dtype=np.float64).reshape(5, 5, 2)
arr_gpu = gpuarray.to_gpu(arr_cpu)
periodicity_stencil = [(1, 0), (-1, 0), (1, 1)]
periodic_gpu_kernel = periodic_gpu(periodicity_stencil, (5, 5), 1, 2)
periodic_cpu_kernel = periodic_cpu(periodicity_stencil)
cpu_result = np.copy(arr_cpu)
periodic_cpu_kernel(cpu_result)
gpu_result = np.copy(arr_cpu)
periodic_gpu_kernel(pdfs=arr_gpu)
arr_gpu.get(gpu_result)
np.testing.assert_equal(cpu_result, gpu_result)

Martin Bauer
committed
def test_block_indexing():
f = fields("f: [3D]")
bi = BlockIndexing(f, make_slice[:, :, :], block_size=(16, 8, 2), permute_block_size_dependent_on_layout=False)
assert bi.call_parameters((3, 2, 32))['block'] == (3, 2, 32)
assert bi.call_parameters((32, 2, 32))['block'] == (16, 2, 8)
bi = BlockIndexing(f, make_slice[:, :, :], block_size=(32, 1, 1), permute_block_size_dependent_on_layout=False)
assert bi.call_parameters((1, 16, 16))['block'] == (1, 16, 2)
bi = BlockIndexing(f, make_slice[:, :, :], block_size=(16, 8, 2), maximum_block_size="auto")
# This function should be used if number of needed registers is known. Can be determined with func.num_regs
blocks = bi.limit_block_size_by_register_restriction([1024, 1024, 1], 1000)
assert sum(blocks) < sum([1024, 1024, 1])