Newer
Older
import sympy as sp
import pystencils as ps

Alexander Reinauer
committed
import numpy as np
import pytest
from itertools import product
def advection_diffusion(dim: int):

Alexander Reinauer
committed
# parameters
if dim == 2:
L = (32, 32)

Alexander Reinauer
committed
elif dim == 3:
L = (16, 16, 16)

Alexander Reinauer
committed
dh = ps.create_data_handling(domain_size=L, periodicity=True, default_target='cpu')

Alexander Reinauer
committed
n_field = dh.add_array('n', values_per_cell=1)
j_field = dh.add_array('j', values_per_cell=3 ** dim // 2, field_type=ps.FieldType.STAGGERED_FLUX)

Alexander Reinauer
committed
velocity_field = dh.add_array('v', values_per_cell=dim)
D = 0.0666
time = 100

Alexander Reinauer
committed
def grad(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dim)])
flux_eq = - D * grad(n_field)
fvm_eq = ps.fd.FVM1stOrder(n_field, flux=flux_eq)
vof_adv = ps.fd.VOF(j_field, velocity_field, n_field)
# merge calculation of advection and diffusion terms
flux = []
for adv, div in zip(vof_adv, fvm_eq.discrete_flux(j_field)):
assert adv.lhs == div.lhs
flux.append(ps.Assignment(adv.lhs, adv.rhs + div.rhs))
flux_kernel = ps.create_staggered_kernel(flux).compile()
pde_kernel = ps.create_kernel(fvm_eq.discrete_continuity(j_field)).compile()

Alexander Reinauer
committed
sync_conc = dh.synchronization_function([n_field.name])
# analytical density calculation
def density(pos: np.ndarray, time: int, D: float):
return (4 * np.pi * D * time)**(-dim / 2) * \
np.exp(-np.sum(np.square(pos), axis=-1) / (4 * D * time))

Alexander Reinauer
committed
pos = np.zeros((*L, dim))
xpos = np.arange(-L[0] // 2, L[0] // 2)
ypos = np.arange(-L[1] // 2, L[1] // 2)

Alexander Reinauer
committed
if dim == 2:
pos[..., 1], pos[..., 0] = np.meshgrid(xpos, ypos)
elif dim == 3:
zpos = np.arange(-L[2] // 2, L[2] // 2)

Alexander Reinauer
committed
pos[..., 2], pos[..., 1], pos[..., 0] = np.meshgrid(xpos, ypos, zpos)
pos += 0.5

Alexander Reinauer
committed
def run(velocity: np.ndarray, time: int):
dh.fill(n_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(j_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
# set initial values for velocity and density
for i in range(dim):
dh.fill(velocity_field.name, velocity[i], i, ghost_layers=True, inner_ghost_layers=True)
dh.fill(n_field.name, 0)
if dim == 2:
start = ps.make_slice[L[0] // 2 - 1:L[0] // 2 + 1, L[1] // 2 - 1:L[1] // 2 + 1]
else:
start = ps.make_slice[L[0] // 2 - 1:L[0] // 2 + 1, L[1] // 2 - 1:L[1] // 2 + 1,
L[2] // 2 - 1:L[2] // 2 + 1]
dh.fill(n_field.name, 2**-dim, slice_obj=start)

Alexander Reinauer
committed
sync_conc()
for i in range(time):
dh.run_kernel(flux_kernel)
dh.run_kernel(pde_kernel)
sync_conc()
sim_density = dh.gather_array(n_field.name)
# check that mass was conserved
assert np.isclose(sim_density.sum(), 1)
assert np.all(sim_density > 0)
# check that the maximum is in the right place
peak = np.unravel_index(np.argmax(sim_density, axis=None), sim_density.shape)
assert np.allclose(peak, np.array(L) // 2 - 0.5 + velocity * time, atol=0.5)
# check the concentration profile
if np.linalg.norm(velocity) == 0:
calc_density = density(pos - velocity * time, time, D)
target = [time, D]
pytest.importorskip('scipy.optimize')
from scipy.optimize import curve_fit
popt, _ = curve_fit(lambda x, t, D: density(x - velocity * time, t, D),
pos.reshape(-1, dim),
sim_density.reshape(-1),
p0=target)
assert np.isclose(popt[0], time, rtol=0.1)
assert np.isclose(popt[1], D, rtol=0.1)
assert np.allclose(calc_density, sim_density, atol=1e-4)
return lambda v: run(np.array(v), time)
advection_diffusion.runners = {}
@pytest.mark.parametrize("velocity", list(product([0, -0.047, 0.041], [0, -0.031, 0.023])))
def test_advection_diffusion_2d(velocity):
if 2 not in advection_diffusion.runners:
advection_diffusion.runners[2] = advection_diffusion(2)
advection_diffusion.runners[2](velocity)
@pytest.mark.parametrize("velocity", list(product([0, -0.047, 0.041], [0, -0.031, 0.023], [0, -0.017, 0.011])))
def test_advection_diffusion_3d(velocity):
if 3 not in advection_diffusion.runners:
advection_diffusion.runners[3] = advection_diffusion(3)
advection_diffusion.runners[3](velocity)
def VOF2(j: ps.field.Field, v: ps.field.Field, ρ: ps.field.Field, simplify=True):
"""Volume-of-fluid discretization of advection
Args:
j: the staggered field to write the fluxes to. Should have a D2Q9/D3Q27 stencil. Other stencils work too, but
incur a small error (D2Q5/D3Q7: v^2, D3Q19: v^3).
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
v: the flow velocity field
ρ: the quantity to advect
simplify: whether to simplify the generated expressions (slow, but makes them much more readable and faster)
"""
dim = j.spatial_dimensions
assert ps.FieldType.is_staggered(j)
def assume_velocity(e):
if not simplify:
return e
repl = {}
for c in e.atoms(sp.StrictGreaterThan, sp.GreaterThan):
if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number):
if c.rhs <= -1:
repl[c] = True
elif c.rhs >= 1:
repl[c] = False
for c in e.atoms(sp.StrictLessThan, sp.LessThan):
if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number):
if c.rhs >= 1:
repl[c] = True
elif c.rhs <= -1:
repl[c] = False
for c in e.atoms(sp.Equality):
if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number):
if c.rhs <= -1 or c.rhs >= 1:
repl[c] = False
return e.subs(repl)
class AABB:
def __init__(self, corner0, corner1):
self.dim = len(corner0)
self.minCorner = sp.zeros(self.dim, 1)
self.maxCorner = sp.zeros(self.dim, 1)
for i in range(self.dim):
self.minCorner[i] = sp.Piecewise((corner0[i], corner0[i] < corner1[i]), (corner1[i], True))
self.maxCorner[i] = sp.Piecewise((corner1[i], corner0[i] < corner1[i]), (corner0[i], True))
def intersect(self, other):
minCorner = [sp.Max(self.minCorner[d], other.minCorner[d]) for d in range(self.dim)]
maxCorner = [sp.Max(minCorner[d], sp.Min(self.maxCorner[d], other.maxCorner[d]))
for d in range(self.dim)]
return AABB(minCorner, maxCorner)
@property
def volume(self):
v = sp.prod([self.maxCorner[d] - self.minCorner[d] for d in range(self.dim)])
if simplify:
return sp.simplify(assume_velocity(v.rewrite(sp.Piecewise)))
else:
return v
fluxes = []
cell = AABB([-0.5] * dim, [0.5] * dim)
cell_s = AABB(sp.Matrix([-0.5] * dim) + v.center_vector, sp.Matrix([0.5] * dim) + v.center_vector)
for d, neighbor in enumerate(j.staggered_stencil):
c = sp.Matrix(ps.stencil.direction_string_to_offset(neighbor)[:dim])
cell_n = AABB(sp.Matrix([-0.5] * dim) + c, sp.Matrix([0.5] * dim) + c)
cell_ns = AABB(sp.Matrix([-0.5] * dim) + c + v.neighbor_vector(neighbor),
sp.Matrix([0.5] * dim) + c + v.neighbor_vector(neighbor))
fluxes.append(assume_velocity(ρ.center_vector * cell_s.intersect(cell_n).volume
- ρ.neighbor_vector(neighbor) * cell_ns.intersect(cell).volume))
assignments = []
for i, d in enumerate(j.staggered_stencil):
for lhs, rhs in zip(j.staggered_vector_access(d).values(), fluxes[i].values()):
assignments.append(ps.Assignment(lhs, rhs))
return assignments
@pytest.mark.parametrize("dim", [2, 3])
def test_advection(dim):
L = (8,) * dim
dh = ps.create_data_handling(L, periodicity=True, default_target='cpu')
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=3 ** dh.dim // 2, field_type=ps.FieldType.STAGGERED_FLUX)
u = dh.add_array('u', values_per_cell=dh.dim)
dh.cpu_arrays[c.name][:] = (np.random.random([l + 2 for l in L]))
dh.cpu_arrays[u.name][:] = (np.random.random([l + 2 for l in L] + [dim]) - 0.5) / 5
vof1 = ps.create_kernel(ps.fd.VOF(j, u, c)).compile()
dh.fill(j.name, np.nan, ghost_layers=True)
dh.run_kernel(vof1)
j1 = dh.gather_array(j.name).copy()
vof2 = ps.create_kernel(VOF2(j, u, c, simplify=False)).compile()
dh.fill(j.name, np.nan, ghost_layers=True)
dh.run_kernel(vof2)
j2 = dh.gather_array(j.name)
assert np.allclose(j1, j2)
@pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9"])
def test_ek(stencil):
# parameters
L = (40, 40)
D = sp.Symbol("D")
z = sp.Symbol("z")
# data structures
dh = ps.create_data_handling(L, periodicity=True, default_target='cpu')
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=int(stencil[-1]) // 2, field_type=ps.FieldType.STAGGERED_FLUX)
Phi = dh.add_array('Φ', values_per_cell=1)
# perform automatic discretization
def Gradient(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)])
flux_eq = -D * Gradient(c) + D * z * c.center * Gradient(Phi)
disc = ps.fd.FVM1stOrder(c, flux_eq)
flux_assignments = disc.discrete_flux(j)
continuity_assignments = disc.discrete_continuity(j)
# manual discretization
x_staggered = - c[-1, 0] + c[0, 0] + z * (c[-1, 0] + c[0, 0]) / 2 * (Phi[-1, 0] - Phi[0, 0])
y_staggered = - c[0, -1] + c[0, 0] + z * (c[0, -1] + c[0, 0]) / 2 * (Phi[0, -1] - Phi[0, 0])
xy_staggered = (- c[-1, -1] + c[0, 0]) / sp.sqrt(2) + \
z * (c[-1, -1] + c[0, 0]) / 2 * (Phi[-1, -1] - Phi[0, 0]) / sp.sqrt(2)
xY_staggered = (- c[-1, 1] + c[0, 0]) / sp.sqrt(2) + \
z * (c[-1, 1] + c[0, 0]) / 2 * (Phi[-1, 1] - Phi[0, 0]) / sp.sqrt(2)
A0 = (1 + sp.sqrt(2) if j.index_shape[0] == 4 else 1)
jj = j.staggered_access
divergence = -1 * sum([jj(d) for d in j.staggered_stencil
+ [ps.stencil.inverse_direction_string(d) for d in j.staggered_stencil]])
update = [ps.Assignment(c.center, c.center + divergence)]
flux = [ps.Assignment(j.staggered_access("W"), D * x_staggered / A0),
ps.Assignment(j.staggered_access("S"), D * y_staggered / A0)]
if j.index_shape[0] == 4:
flux += [ps.Assignment(j.staggered_access("SW"), D * xy_staggered / A0),
ps.Assignment(j.staggered_access("NW"), D * xY_staggered / A0)]
# compare
for a, b in zip(flux, flux_assignments):
assert a.lhs == b.lhs
assert sp.simplify(a.rhs - b.rhs) == 0
for a, b in zip(update, continuity_assignments):
assert a.lhs == b.lhs
assert a.rhs == b.rhs
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
@pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9", "D3Q7", "D3Q19", "D3Q27"])
@pytest.mark.parametrize("derivative", [0, 1])
def test_flux_stencil(stencil, derivative):
L = (40, ) * int(stencil[1])
dh = ps.create_data_handling(L, periodicity=True, default_target='cpu')
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=int(stencil[3:]) // 2, field_type=ps.FieldType.STAGGERED_FLUX)
def Gradient(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)])
eq = [sp.Matrix([sp.Symbol(f"a_{i}") * c.center for i in range(dh.dim)]), Gradient(c)][derivative]
disc = ps.fd.FVM1stOrder(c, flux=eq)
# check the continuity
continuity_assignments = disc.discrete_continuity(j)
assert [len(a.rhs.atoms(ps.field.Field.Access)) for a in continuity_assignments] == \
[int(stencil[3:])] * len(continuity_assignments)
# check the flux
flux_assignments = disc.discrete_flux(j)
assert [len(a.rhs.atoms(ps.field.Field.Access)) for a in flux_assignments] == [2] * len(flux_assignments)
@pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9", "D3Q7", "D3Q19", "D3Q27"])
def test_source_stencil(stencil):
L = (40, ) * int(stencil[1])
dh = ps.create_data_handling(L, periodicity=True, default_target='cpu')
c = dh.add_array('c', values_per_cell=1)
j = dh.add_array('j', values_per_cell=int(stencil[3:]) // 2, field_type=ps.FieldType.STAGGERED_FLUX)
continuity_ref = ps.fd.FVM1stOrder(c).discrete_continuity(j)
for eq in [c.center] + [ps.fd.diff(c, i) for i in range(dh.dim)]:
disc = ps.fd.FVM1stOrder(c, source=eq)
diff = sp.simplify(disc.discrete_continuity(j)[0].rhs - continuity_ref[0].rhs)
if type(eq) is ps.field.Field.Access:
assert len(diff.atoms(ps.field.Field.Access)) == 1
else:
assert len(diff.atoms(ps.field.Field.Access)) == 2